From spatial ecology to spatial epidemiology: modeling spatial distributions of different cancer types with principal coordinates of neighbor matrices
نویسندگان
چکیده
BACKGROUND Epidemiology and ecology share many fundamental research questions. Here we describe how principal coordinates of neighbor matrices (PCNM), a method from spatial ecology, can be applied to spatial epidemiology. PCNM is based on geographical distances among sites and can be applied to any set of sites providing a good coverage of a study area. In the present study, PCNM eigenvectors corresponding to positive autocorrelation were used as explanatory variables in linear regressions to model incidences of eight most common cancer types in Finnish municipalities (n = 320). The dataset was provided by the Finnish Cancer Registry and it included altogether 615,839 cases between 1953 and 2010. RESULTS PCNM resulted in 165 vectors with a positive eigenvalue. The first PCNM vector corresponded to the wavelength of hundreds of kilometers as it contrasted two main subareas so that municipalities located in southwestern Finland had the highest positive site scores and those located in midwestern Finland had the highest negative scores in that vector. Correspondingly, the 165(th) PCNM vector indicated variation mainly between the two small municipalities located in South Finland. The vectors explained 13 - 58% of the spatial variation in cancer incidences. The number of outliers having standardized residual > |3| was very low, one to six per model, and even lower, zero to two per model, according to Chauvenet's criterion. The spatial variation of prostate cancer was best captured (adjusted r (2) = 0.579). CONCLUSIONS PCNM can act as a complementary method to causal modeling to achieve a better understanding of the spatial structure of both the response and explanatory variables, and to assess the spatial importance of unmeasured explanatory factors. PCNM vectors can be used as proxies for demographics and causative agents to deal with autocorrelation, multicollinearity, and confounding variables. PCNM may help to extend spatial epidemiology to areas with limited availability of registers, improve cost-effectiveness, and aid in identifying unknown causative agents, and predict future trends in disease distributions and incidences. A large advantage of using PCNM is that it can create statistically valid reflectors of real predictors for disease incidence models with only little resources and background information.
منابع مشابه
Emerging Themes in Epidemiology
Background: Epidemiology and ecology share many fundamental research questions. Here we describe how principal coordinates of neighbor matrices (PCNM), a method from spatial ecology, can be applied to spatial epidemiology. PCNM is based on geographical distances among sites and can be applied to any set of sites providing a good coverage of a study area. In the present study, PCNM eigenvectors ...
متن کاملSpatial epidemiology and pattern analysis of childhood cancers in Tehran, Iran
Identification of cancer clusters may have an important value to the study of disease etiology in cancer surveillance. We aimed to determine the spatial pattern of childhood cancer cases (CCCs) from 2007 to 2009 in Tehran, Iran. Records of 176 childhood cancer counts (children younger than 15 years old) for 2007-2009 were obtained from Iran’s Ministry of Health and Medical Education. Thereafter...
متن کاملAnalysis of Spatial Imbalance Associated with Rural Settlements in Iran
Spatial distributions of rural settlements in Iran represent an imbalanced nature. The major objective of this study is to investigate the spatial patterns of Iranian rural settlements using certain indicators and indices .It further tries to propose a model regarding the analysis of spatial imbalances. This study further supported by application of modifiable areal unit problem(MAUP) suitable ...
متن کاملExploring the spatial patterns of three prevalent cancer latent risk factors in Iran; Using a shared component model
Background and aims: The aim of this study was the modeling of the incidence rates of Colorectal, breast and prostate cancers using a shared component model in order to explore the spatial pattern of their shared risk factors (i.e., obesity and low physical activity) affecting on cancer incidence, and also to estimate the relative weight of these shared components. Methods: In this study,...
متن کاملModelling of the spatial distribution of the rare plant Lilium ledebourii
The aim of this study was modelling the spatial distribution ofLilium ledebourii (Baker) Boiss. based on ecological characteristics, in order to predict potential habitats for conservation of a rare plant. Knowledge of the spatial distributions of rare and threatened species and the underlying ecological factors plays an important role in regional conservation assessments and development planni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2014